Fueling for your rowing training

Christel Dunshea-Mooij (MSc Nutrition) Head of Performance Nutrition HPSNZ

It takes a lot of amazing people to feed a rowing team

Optimal Nutrient timing

Excellent quality of food

Fuelling according to the work you are doing by adding snacks throughout the day

Optimise protein pulsing by avoiding long periods without food (more than 4+ hours)

What do you eat before your training

- Focus on Carbohydrates
- Adequate amounts of protein
- Enough calories?

Your pre-training meal depends on how much time you have to digest your meal

Less than 1 hour before training

Between 2-3 hours before training

More than 3 hours before training

Brooke Francis

Silver Olympic Medal

Winner Tokyo

Olympic Games W2X

What do you eat during training

- Carbohydrates are king
- Aim for 30-60 g of carbohydrates per hour

What do you eat during training

Time	Recommendations
< 1 hour	Water OR Carbohydrate snack/drink for a high intensity session
1-2 hours	30-60 g of carbohydrate per hour

Banana

Fruit leather

onigiri

Logan Ulrich

Elite Men's Coxless Four

He will be competing at the 2024 World Rowing Cup II

What do you eat after training?

Best Recovery

- 1. REPLENISH your muscle glycogen with carbohydrates
- 2. REPAIR muscle tissues with protein
- 3. REHYDRATE with fluids and electrolytes

1. Replenish

C

2. Repair your muscles

Muscle is stimulated to increase its protein synthetic rates for up to **24** hours after a workout.

Aim to spread protein over meals and snacks consumed over the day

20 g Protein

3. Rehydrate

Urine color

Hydration Tips

Thirst

Body mass

KO TĂTAU TE KAPA O AOTEAROA WE ARE THE NEW ZEALAND TEAM

Daily Hydration Needs

The average person needs to drink 30-40ml of flu per kg body weight per day.

For most people, this is 2.5 to 3.5 L of fluid daily.

Higher intakes will be required on hot days in Par

This does not include fluid lost as sweat!

Aim to replace 150% of the fluid lost during training		
Weight before training	70.0 kg	
Weight after training	69.6 kg	
Fluid drank during training	0.5 kg (ml)	
Total fluid lost	0.9 kg	

To fully replace fluid losses before the next training session you need to drink 0.9 X 1.5 = 1.35 ml before the next training session

Tom Mackintosh

Gold Olympic Medal

Winner Tokyo

Olympic Games M8+

Are you eating enough?

Rowers have a high training load; average 19.8 hour/week

Rowers are often of large statue

- Men: 95-98 kg
- Women: 70-80 kg

Energy availability is described as the energy available to the body (from food) after the costs of exercise has been accounted for. It is the fuel (energy) available for physiological processes within the body.

Energy available from food (kCal)

Cost of exercise (kCal)

Energy Available for normal bodily processes (kCal * kg⁻¹ * FFM⁻¹ * day⁻¹)

Within day energy balance - example

Exercise shown in red, food intake shown in green Blue line indicates hourly energy balance

id, food intake shown in green ourly energy balance

Small changes can make a big difference

Breakfast: Porridge + milk

Plus: maple syrup + 1 tsp peanut butter + banana + walnuts Recovery Whey protein + water Plus: milk + piece of toast + jam **Lunch:** Wrap + ham + salad

Plus: change the wrap for toast or add beans + glass of juice

PM
Piece of fruit
Plus: milk + peanut butter
+ banana (smoothie)

Dinner: ¹/₄ plate carbohydrate ¹/₄ plate protein ¹/₂ plate vegetables Plus: fruit crumble + yoghurt

Any questions?

race day nutrition

race day nutrition

